domingo, 8 de agosto de 2010

Difracción y Fotomacrografía

Apertura de Diafragma: f22
Apertura de Diafragma: f45


En el anterior artículo sobre Teoría de la Difracción para objetivos circulares, quedó establecido que una separación entre los centros de los discos de Airy de:

          d = 1.22 fλ

garantizaba que, según el criterio de Rayleigh,  dos puntos de luz muy próximos se resolvieran como diferentes puntos en la imagen y no constituyeran un único ovalo de luz, algo que evidentemente perjudica su nitidez.
Ha llegado el momento de comprender cuáles son las consecuencias prácticas de esta afirmación.
Si tomamos un sensor APS-C típico de 23.6 mm. de ancho por 15.8 mm. de alto que contiene en su interior un patrón de 3872 x 2952 fotocaptores de luz, es bastante sencillo calcular cuál es la separación estimada entre estos captores.

Separación horizontal = 23.6 / 3872 = 0.0061 mm.
Separación vertical = 15.8 / 2952 = 0.0054 mm.

Como estos resultados son meramente estimativos, podemos afirmar que la separación es de alrededor de 0.006 mm.
Si la luz incidente es predominantemente de tono azulado, lo cual es lo más frecuente en la fotografía de exterior, su longitud de onda es alrededor de 0.0004 mm.
Con estos datos estamos en condiciones de calcular el número f que garantizará el criterio de Rayleigh. Si utilizamos un valor de f11, tendremos que:

          d = 1.22 x 11 x 0.0004 = 0.0054 mm.

Por tanto, con este valor para el número f, la distancia entre los centros de los discos de Airy es inferior a la que existe entre dos fotocaptores próximos y los puntos de imagen se resolverán adecuadamente.
En el encabezado del artículo aparecen dos fotografías tomadas en exactamente las mismas condiciones utilizando trípode, disparador remoto y el objetivo macro Tamron 90 mm. f2.8.
La única diferencia es que en la primera de ellas se ha utilizado un valor f de 22 y en la segunda uno de 45. Se aprecia claramente que, a pesar de ser un valor notablemente más cerrado que el correspondiente al umbral f11, en la primera no es observable una pérdida de nitidez apreciable, mientras que en la segunda sí. Los valores para estos números f son los siguientes:

          d22 = 1.22 x 22 x 0.0004 = 0.011
          d45 = 1.22 x 45 x 0.0004 = 0.022

En el primer caso la distancia es aproximadamente el doble que la que existe entre dos fotocaptores consecutivos. En el segundo es cuatro veces mayor.
Hemos de tener en cuenta que los cálculos anteriores son meramente estimativos y su única intención es dar una aproximación cualitativa al problema, sin pretender ser absolutamente exactos.
Por último, hay que indicar que el título del artículo está relacionado con el hecho de que estos diafragmas tan cerrados sólo son utilizados en la práctica en fotomacrografía.

domingo, 1 de agosto de 2010

La Difracción en la fotografía

Cuando la luz incide sobre las esquinas de un objeto o atraviesa una apertura en éste, se difracta, lo cual significa que aparece un patrón de interferencia consistente en zonas alternativas de luz y sombra. En el caso de que la apertura sea aproximadamente circular, tal como la que forma el diafragma, estas zonas son anillos concéntricos. Eso sí de un tamaño muy, muy pequeño. En nuestra experiencia diaria la difracción es la causante de esa zona intemedia de luminosidad entre las partes fuertemente iluminadas por el sol y las zonas más oscuras, que se produce a veces en las esquinas de los edificios.

En la figura que acompaña a este artículo, podemos apreciar la situación en la cual la luz procedente de infinito pasa a través de la lente expuesta a través de un diafragma de diámetro D. En estas condiciones, el sensor de la cámara deberá estar situado a una distancia F, correspondiente a la longitud focal del objetivo, si deseamos obtener una imagen nítida.
Cuando la luz pasa, crea el patrón de inteferencia antes mencionado, en el cual hay un primer círculo iluminado (conocido como disco de Airy) y una serie de anillos concéntricos oscuros alternados por anillos concéntricos iluminados. La luminosidad de estos anillos decae fuertemente según nos vamos alejando del centro. Es lo que significa la onda representada en el diagrama. La Teoría de la Difracción de Fraunhofer (Optica. Hecht-Zajac, Fondo Educativo Interamericano, pp.372-375) afirma que, para rendijas circulares, el ángulo θ formado por el eje óptico de la lente y la posición de inicio del primer anillo oscuro se calcula mediante la fórmula:

              λ
θ = 1.22 ---
              D

donde λ es la longitud de onda de la luz incidente.
Si tenemos dos rayos de luz muy próximos, los patrones de difracción se verán solapados. Si están realmente próximos, los dos dicos de Airy respectivos se solaparán y ambos puntos de luz serán indistinguibles en el sensor. Formarán un ovalo continuo. El criterio de Rayleigh afirma que para que ambos puntos de luz puedan ser distinguidos, los centros de los respectivos discos de Airy deberán estar separados, al menos, por el radio de cualquiera de ellos. (Debemos recordar, según se observa en la figura, que aún dentro del anillo de Airy, la luminosidad decae fuertemente según nos alejamos del centro).
Por tanto, la separación d - como también se observa en la figura - es expresable por la siguiente fórmula (Teniendo en cuenta que para ángulos muy pequeños senθ es aproximadamente igual a θ):

d = F θ

Sustituyendo en la fórmula anterior, nos encontramos que:

                 λ
d = F 1.22 ---
                D

Pero, resulta que el cociente F/ D es el número f correspondiente a esa apertura.
De lo cual nos queda la exprexión:

d = 1.22 f λ

la cual nos permite calcular la distancia mínima entre los centros de los discos de Airy, correspondientes a dos rayos próximos de luz, para que puedan resolverse como dos distintos y no se confundan como un único punto de luz.
En el próximo artículo veremos las consecuencias prácticas de esta fórmula.